

Introduction

Phonotactic Language Recognition (PLRE) predicts the language spoken in a sample of speech using a sequence of phonemes, however modelling these sequences have some challenges:

- . Mismatch between the vocabulary of the phoneme recognizers and the languages to recognize.
- . Overlapping of phonemes and n-gram units in different languages.
- . Large sequences and scattering issues due to high order n-grams.

Contributions

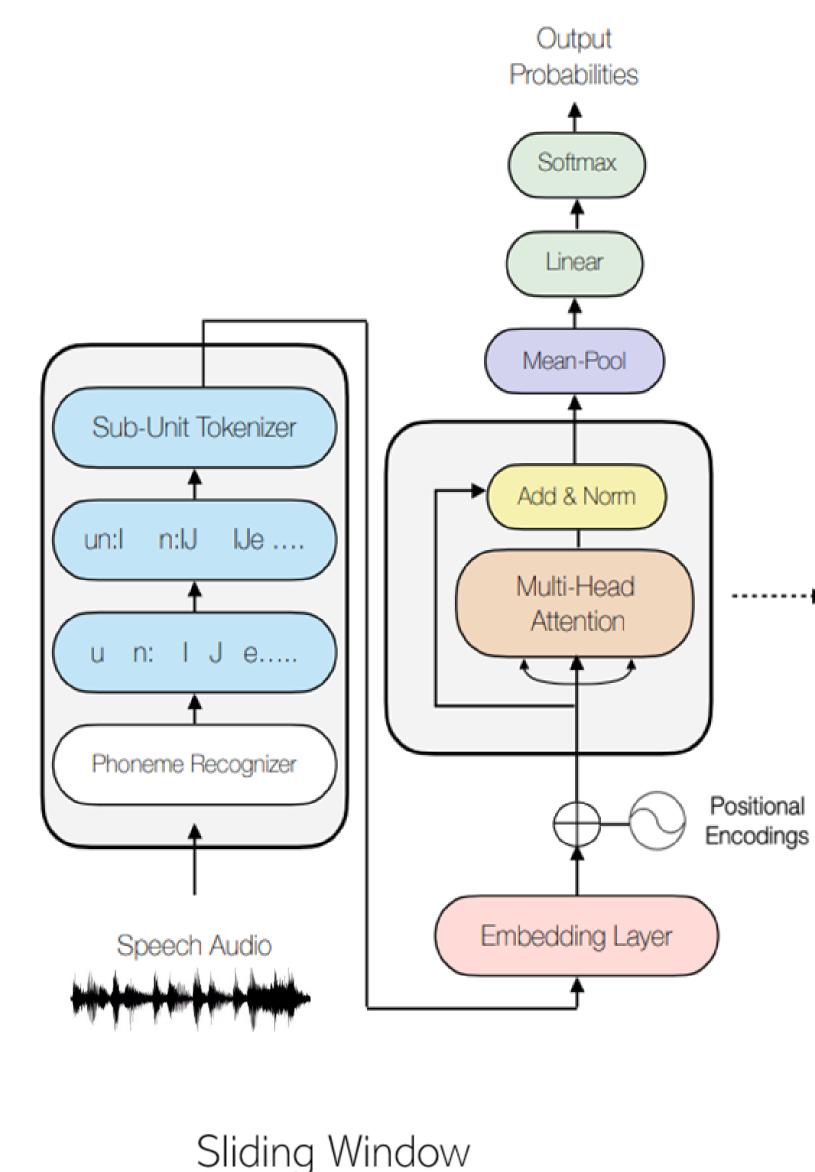
- . We propose the use of transformer encoder architecture and a language classifier on top to perform PLRE.
- . The integration of a **sliding attention window** to handle long input sequences.
- . We compare the use of two phoneme recognizers and two Sub-unit tokenizers to perform PRLE.

Database

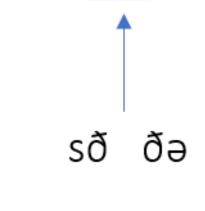
. We used the Kalaka-3 database which contains clean and noisy audio recordings for 6 highly similar languages such as Spanish, Portuguese, Galician, Catalan and others.

		-		-
		Train	Dev	E
	Basque	794	70	1:
	Catalan	649	79	1.
Languages	English	587	81	1:
	Galician	975	67	1
	Portuguese	853	84	1
	Spanish	798	77	1:
	Nº Files	4656	458	94
Overall	N° of clean files	3060	-	
	№ of noisy files	1596	-	

Phonotactic Language Recognition using a Universal Phoneme Recognizer and a Transformer Architecture


David Romero¹, Luis Fernando D'Haro², Marcos Estecha-Garitagoitia², Christian Salamea^{1,2} Interaction, Robotics and Automation Research Group, Universidad Politecnica Salesiana¹ Speech Technology Group, Information and Telecommunication Center, Universidad Politecnica de Madrid²

Eval 150 58 56 60 .63 <u>154</u> 941


Proposed System

Transformer-based Encoder

- 1. The speech signals are used as input to a phoneme recognizer, we compare the Brno vs Allosaurus phoneme recognizers.
- 2. We use 3-gram phonetic units with a sub-unit tokenizer, we compare Byte Pair Encoding vs Word Piece .
- 3. The n-gram sequences are the input of the transformer encoder which implements a **sliding window** approach.

<mark>It^ht^j t^ht^jʌ t^jʌs̪ ʌs̪n s̪nt ntɨ tɨɛ </mark>ɨɛt^h ɛt^hm t^hmɔ mɔɹ ɔɹm ɹmʌ mʌn ʌni nif ifɹ fɹʌ ɹʌm ʌmð mðə ðəg əgʌ gʌv ʌvɹ vɹm umə mən ənt ntı tıs ısð sðə ðəm

Sub-unit tokenizer

Sliding window attention

>								

Positional

Results

formance compared with the other recognizers.

	Br	no	Allosaurus				
	Accuracy	Cavg	Accuracy	Cavg			
Hung	72.4 ± 0.43	16.5 ± 0.26	78.5 ± 0.39	$\underline{12.9}\pm\underline{0.24}$			
Czech	66.9 ± 0.63	19.8 ± 0.36	$\underline{78.0} \pm \underline{0.39}$	$\underline{13.1} \pm \underline{0.24}$			
Russian	69.7 ± 0.68	18.0 ± 0.39	<u>80.7</u> ± <u>0.59</u>	<u>11.5</u> ± <u>0.36</u>			
IPA	-	_	85.0 ± 0.51	$\textbf{8.9} \pm \textbf{0.29}$			

coding by a statistically significant improvement.

Systems	Accuracy	Imp(%)	\mathbf{C}_{avg}	Imp (%)
Byte Pair Encoding	86.1 ± 0.26	_	8.3 ± 0.13	-
Word Piece	$\textbf{86.9} \pm \textbf{0.28}$	0.9%	7.7 ± 0.16	7.2%

use sliding windows nor a sub-unit tokenizer.

Systems Phonotactic i-Vector system Transformer baseline [15] + sliding window (this wor + sliding window & tokeni

the best result which combines 6 different models.

Systems	Cavg	Imp (%)
Acoustic MFCC [27]	6.50	-
Best fusion of 2 models [27]	5.03	-
2 acoustics + Phonotactic i-vector [27]	4.48	10.93
Best fusion with 6 models [27]	3.52	49.35
Acoustic + Transformer (this work)	3.62	47.91

. First we compare the Brno vs Allosaurus phoneme recognizers. The latter outperforms the Brno recognizer in all the tested languages. The full set (IPA) of the Allosaurus recognizer shows the best per-

. Byte Pair Encoding and Word Piece tokenizer are compared using 3-grams phonetic sequences. Word Piece outperforms Byte Pair En-

. Our system outperforms the best phonotactic system in the Kalaka-3 database, as well as our previous transformer model that did not

	Devel	Eval
n [27]	6.94	9.85
	8.42	10.21
rk)	7.45	9.03
izer (this work)	6.85	7.78

. The fusion of our system with an acoustic model provides complementary information, reaching almost the same performance with

